Time–Domain Decomposition Iterative Methods for the Solution of Distributed Linear Quadratic Optimal Control Problems
نویسندگان
چکیده
We study a class of time–domain decomposition based methods for the solution of distributed linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the distributed linear quadratic optimal control problem as a discrete–time optimal control (DTOC) problem in Hilbert space. The optimality conditions for this DTOC problem lead to a linear system with block structure. This motivates the application of block Gauss–Seidel methods for its solution. We show that certain instantaneous control techniques can be viewed as the application of one step of the forward block Gauss–Seidel method applied to the DTOC optimality system. To obtain better convergence properties, we imbed the block Gauss–Seidel methods as preconditioners in a Krylov–subspace method.
منابع مشابه
A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The...
متن کاملDistributed Solution of Optimal Control Problems Governed by Parabolic Equations
We present a spatial domain decomposition (DD) method for the solution of discretized parabolic linear–quadratic optimal control problems. Our DD preconditioners are extensions of Neumann-Neumann DD methods, which have been successfully applied to the solution of single elliptic partial differential equations and of linear–quadratic optimal control problems governed by elliptic equations. We us...
متن کاملDomain Decomposition Preconditioners for Linear–quadratic Elliptic Optimal Control Problems
We develop and analyze a class of overlapping domain decomposition (DD) preconditioners for linear-quadratic elliptic optimal control problems. Our preconditioners utilize the structure of the optimal control problems. Their execution requires the parallel solution of subdomain linear-quadratic elliptic optimal control problems, which are essentially smaller subdomain copies of the original pro...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملNeumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems
We present a class of domain decomposition (DD) preconditioners for the solution of elliptic linear-quadratic optimal control problems. Our DD preconditioners are extensions of Neumann–Neumann DD preconditioners, which have been successfully applied to the solution of single PDEs. The DD preconditioners are based on a decomposition of the optimality conditions for the elliptic linear-quadratic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000